Life cycle assessment of a marine biorefinery producing protein, bioactives and polymeric packaging material

Author:

Amponsah LorraineORCID,Chuck Christopher,Parsons Sophie

Abstract

Abstract Purpose Algal research has been dominated by the use of marine biomass (mainly microalgae) as feedstock in the production of second-generation biofuels, albeit with limited economic success. A promising alternative strategy is the valorisation of seaweed (macroalgae), with the cascaded extraction of its high-value components, as well as lower-value components further downstream, under the ‘biorefinery concept’. The goal of this study was to assess the environmental performance of one such marine biorefinery situated in the UK. Methods Attributional life cycle assessment (LCA) was conducted on a hypothetical marine biorefinery coproducing fucoidan, laminarin, protein and alginate/cellulose packaging material (target product), from cultivated Saccharina latissima. The functional unit was the production of 1 kg of packaging material. A total of 6 scenarios were modelled, varying in coproduct management methodology (system expansion, mass allocation or economic allocation) and applied energy mix (standard or green energy). Sensitivity analysis was also conducted, evaluating the systems response to changes in allocation methodology; product market value; biomass composition and transport mode and distance. LCA calculations were performed using OpenLCA (version 1.10.3) software, with background processes modelled using the imported Ecoinvent 3.6 database. Environmental impacts were quantified under ReCiPe methodology at the midpoint level, from the ‘Heirarchist’ (H) perspective. Results and discussion The overall global warming impacts ranged from 1.2 to 4.52 kg CO2 eq/kg biopolymer, with the application of economic allocation; 3.58 to 7.06 kg CO2eq/kg with mass allocation and 14.19 to 41.52 kg CO2eq/kg with system expansion — the lower limit representing the instance where green electricity is used and the upper where standard electricity is employed. While implementing the green energy mix resulted in a 67% reduction in global warming impacts, it also incurred a 2–9 fold increase in overall impacts in the categories of terrestrial acidification, human non-carcinogenic toxicity, land-use and terrestrial ecotoxicity. Economic allocation resulted in burden shifting most favourable to the packaging material pathway. Conclusions This study demonstrates that the road to environmental optimisation in marine biorefineries is fraught with trade-offs. From the perspective of LCA — and by extension, the eco-design process that LCA is used to inform — when evaluating such product systems, it serves to strike a balance between performance across a broad spectrum of environmental impact categories, along with having consideration for the nature of energy systems incorporated and LCA methodological elements. Graphical Abstract

Publisher

Springer Science and Business Media LLC

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3