Finite-Element Simulation of a Resonant Frequency-Tunable Vibration Isolator Based on Shape Memory Alloy Wire

Author:

Li Jiefeng,Nie Xutao,Zhang Wei,Ma Yueyin

Abstract

Abstract Background The resonant-frequency-tunable vibration isolator based on Shape Memory Alloys (SMAs) combines the priority of passive and active vibration isolators, expands its engineering application, and improves the efficiency of vibration isolation. However, the special characteristics of SMAs and the complexity of the resonant-frequency-tunable vibration isolator result in the difficulty in finite-element analysis. Methods This article employs the ABAQUS subroutine and presents the finite-element analysis for this resonant-frequency-tunable vibration isolator, which simulates the thermomechanical responses of SMA wires and the mechanical behaviors of the vibration isolator. Results The pseudoelasticity characteristics of SMA wires were simulated and validated. The mechanical characteristics of the vibration isolator, such as the temperatures, martensitic volume fractions, displacements, and equivalent stresses, were obtained and verified. Conclusions The results show that the finite-element analysis method presented is appropriate for simulating mechanical behaviors of the resonant-frequency-tunable vibration isolator. The analysis results reveal in detail the mechanical characteristics of the vibration isolator.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Immunology,Immunology and Allergy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3