Affiliation:
1. The State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan 410082, China
Abstract
This study presents a technique that uses a model reduction method for the dynamic response analysis of a beam structure to a moving load, which can be modeled either as a moving point force or as a moving body. The nature of the dedicated condensation method tailored to address the moving load case is that the master degrees of freedom are reselected, and the coefficient matrices of the condensed model are recalculated as the load travels from one element to another. Although this process increases computational burden, the overall computational time is still greatly reduced because of the small scale of motion equations. To illustrate and validate the methodology, the technique is initially applied to a simply supported beam subjected to a single-point load moving along the beam. Subsequently, the technique is applied to a practical model for wheel-rail interaction dynamic analysis in railway engineering. Numerical examples show that the condensation model can solve the moving load problem faster than an analytical model or its full finite element model. The proposed model also exhibits high computational accuracy.
Funder
State Key Laboratory of Traction Power
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献