UAV Landing Platform Recognition Using Cognitive Computation Combining Geometric Analysis and Computer Vision Techniques

Author:

García-Pulido J. A.ORCID,Pajares G.,Dormido S.

Abstract

AbstractUnmanned aerial vehicles (UAVs) are excellent tools with extensive demand. During the last phase of landing, they require additional support to that of GPS. This can be achieved through the UAV’s perception system based on its on-board camera and intelligence, and with which decisions can be made as to how to land on a platform (target). A cognitive computation approach is proposed to recognize this target that has been specifically designed to translate human reasoning into computational procedures by computing two probabilities of detection which are combined considering the fuzzy set theory for proper decision-making. The platform design is based on: (1) spectral information in the visible range which are uncommon colors in the UAV’s operating environments (indoors and outdoors) and (2) specific figures in the foreground, which allow partial perception of each figure. We exploit color image properties from specific-colored figures embedded on the platform and which are identified by applying image processing and pattern recognition techniques, including Euclidean Distance Smart Geometric Analysis, to identify the platform in a very efficient and reliable manner. The test strategy uses 800 images captured with a smartphone onboard a quad-rotor UAV. The results verify the proposed method outperforms existing strategies, especially those that do not use color information. Platform recognition is also possible even with only a partial view of the target, due to image capture under adverse conditions. This demonstrates the effectiveness and robustness of the proposed cognitive computing-based perception system.

Funder

Universidad Nacional de Educacion Distancia

Publisher

Springer Science and Business Media LLC

Subject

Cognitive Neuroscience,Computer Science Applications,Computer Vision and Pattern Recognition

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3