The power of desktop scanning electron microscopy with elemental analysis for analyzing urinary stones

Author:

Costa-Bauzá A.,Grases F.,Julià F.

Abstract

AbstractThe aim of this paper is to present a protocol for the routine morphocompositional study of kidney stones in a clinical setting, and to demonstrate that it is a simple and useful approach that can reliably determine the etiology of all types of kidney stones. Our routine study of kidney stones consists of a combination of stereoscopic microscopy, scanning electron microscopy, and infrared spectroscopy. The usefulness of such a procedure is demonstrated by its application to several illustrating examples. The protocol applied here is reliable and fast, and does not require multiple infrared spectroscopic analyses for most non-homogeneous samples. It also provides the identification of components that are present in very small proportions, the characteristics of internal and external structures, and information about areas with biological structures, such as renal tubules. It should be noted that results are obtained in a relatively short time and with high reliability. The detailed morphocompositional study of a urinary calculus is essential for establishing the diagnosis and etiology and for initiating the treatment of a patient with renal lithiasis, because there is a relationship between the specific characteristics of a stone and the specific etiology of the disease. The increasing number of treatments available for patients with different types of renal calculi makes improvements in diagnosis and determination of stone etiology, such as the procedure described here, more important now than ever.

Funder

Ministerio de Ciencia e Innovación

Universitat de Les Illes Balears

Publisher

Springer Science and Business Media LLC

Subject

Urology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3