DNA cytosine methylation and heat-induced deamination

Author:

Ehrlich Melanie1,Norris Kyle F.1,Wang Richard Y.1,Kuo Kenneth C.2,Gehrke Charles W.2

Affiliation:

1. Department of Biochemistry Tulane Medical School, New Orleans, LA 70112

2. Experiment Station Chemical Laboratories, Department of Biochemistry, University of Missouri, Columbia, MO 65211

Abstract

The heat-induced conversion of 5-methylcytosine (m5C) residues to thymine residues and of cytosine to uracil residues in single-stranded DNA was studied. The calculated rates for deamination at 37°C and pH 7.4 were ∼9.5×10−10 and 2.1×10−10 sec−1, respectively. N4-Methyldeoxycytidine, which is in the DNA of certain thermophilic bacteria, was more heat-resistant than was deoxycytidine and much more than was 5-methyldeoxycytidine. Thermophilic bacteria which contain N4-methylcytosine rather than m5C in their genomes may thereby largely avoid heat-induced mutation due to deamination, which is incurred by the many organisms that contain m5C in their DNA.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3