Biochemical reconstitution of a major age-related cancer mutational signature by heat-induced spontaneous deamination of 5-methylcytosine residues, repair of uracil residues, and DNA replication

Author:

Sugiyama TomohikoORCID

Abstract

AbstractNon-enzymatic spontaneous deamination of 5-methylcytosine, producing thymine, is the proposed etiology of cancer mutational signature 1, which is the most predominant signature in all cancers. Here, the proposed mutational process was reconstituted using synthetic DNA and purified proteins. First, single-stranded DNA containing 5-methylcytosine at CpG context was incubated at an elevated temperature to accelerate spontaneous DNA damage. Then, the DNA was treated with uracil DNA glycosylase to remove uracil residues that were formed by deamination of cytosine. The resulting DNA was then used as a template for DNA synthesis by yeast DNA polymerase δ. The DNA products were analyzed by next-generation DNA sequencing, and mutation frequencies were quantified. The observed mutations after this process were exclusively C>T mutations at CpG context, which was very similar to signature 1. When 5-methylcytosine modification and uracil DNA glycosylase were both omitted, C>T mutations were produced on C residues in all sequence contexts, but these mutations were diminished by uracil DNA glycosylase-treatment. These results indicate that the CpG>TpG mutations were produced by the deamination of 5-methylcytosine. Additional mutations, mainly C>G, were introduced by yeast DNA polymerase ζ on the heat-damaged DNA, indicating that G residues of the templates were also damaged. However, the damage on G residues was not converted to mutations with DNA polymerase δ or ε. These results provide biochemical evidence to support that the majority of mutations in cancers are produced by ordinary DNA replication on spontaneously damaged DNA.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3