Object Priors for Classifying and Localizing Unseen Actions

Author:

Mettes PascalORCID,Thong William,Snoek Cees G. M.

Abstract

AbstractThis work strives for the classification and localization of human actions in videos, without the need for any labeled video training examples. Where existing work relies on transferring global attribute or object information from seen to unseen action videos, we seek to classify and spatio-temporally localize unseen actions in videos from image-based object information only. We propose three spatial object priors, which encode local person and object detectors along with their spatial relations. On top we introduce three semantic object priors, which extend semantic matching through word embeddings with three simple functions that tackle semantic ambiguity, object discrimination, and object naming. A video embedding combines the spatial and semantic object priors. It enables us to introduce a new video retrieval task that retrieves action tubes in video collections based on user-specified objects, spatial relations, and object size. Experimental evaluation on five action datasets shows the importance of spatial and semantic object priors for unseen actions. We find that persons and objects have preferred spatial relations that benefit unseen action localization, while using multiple languages and simple object filtering directly improves semantic matching, leading to state-of-the-art results for both unseen action classification and localization.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Reference96 articles.

1. Afouras, T., Owens, A., Chung, J. S., & Zisserman, A. (2020). Self-supervised learning of audio-visual objects from video. In ECCV.

2. Alayrac, J. B., Recasens, A., Schneider, R., Arandjelović, R., Ramapuram, J., De Fauw, J., Smaira, L., Dieleman, S., & Zisserman, A. (2020). Self-supervised multimodal versatile networks. In NeurIPS.

3. Alexiou, I., Xiang, T., & Gong, S. (2016). Exploring synonyms as context in zero-shot action recognition. In ICIP.

4. An, R., Miao, Z., Li, Q., Xu, W., & Zhang, Q. (2019). Spatiotemporal visual-semantic embedding network for zero-shot action recognition. Journal of Electronic Imaging, 28(2), 93.

5. Asano, Y. M., Patrick, M., Rupprecht, C., & Vedaldi, A. (2020). Labelling unlabelled videos from scratch with multi-modal self-supervision. In NeurIPS.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Routing Evidence for Unseen Actions in Video Moment Retrieval;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

2. Video Attribute Prototype Network: A New Perspective for Zero-Shot Video Classification;2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW);2023-10-02

3. Interaction-Aware Prompting for Zero-Shot Spatio-Temporal Action Detection;2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW);2023-10-02

4. Tell me what you see: A zero-shot action recognition method based on natural language descriptions;Multimedia Tools and Applications;2023-09-01

5. Universal Prototype Transport for Zero-Shot Action Recognition and Localization;International Journal of Computer Vision;2023-07-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3