Universal Prototype Transport for Zero-Shot Action Recognition and Localization

Author:

Mettes PascalORCID

Abstract

AbstractThis work addresses the problem of recognizing action categories in videos when no training examples are available. The current state-of-the-art enables such a zero-shot recognition by learning universal mappings from videos to a semantic space, either trained on large-scale seen actions or on objects. While effective, we find that universal action and object mappings are biased to specific regions in the semantic space. These biases lead to a fundamental problem: many unseen action categories are simply never inferred during testing. For example on UCF-101, a quarter of the unseen actions are out of reach with a state-of-the-art universal action model. To that end, this paper introduces universal prototype transport for zero-shot action recognition. The main idea is to re-position the semantic prototypes of unseen actions by matching them to the distribution of all test videos. For universal action models, we propose to match distributions through a hyperspherical optimal transport from unseen action prototypes to the set of all projected test videos. The resulting transport couplings in turn determine the target prototype for each unseen action. Rather than directly using the target prototype as final result, we re-position unseen action prototypes along the geodesic spanned by the original and target prototypes as a form of semantic regularization. For universal object models, we outline a variant that defines target prototypes based on an optimal transport between unseen action prototypes and object prototypes. Empirically, we show that universal prototype transport diminishes the biased selection of unseen action prototypes and boosts both universal action and object models for zero-shot classification and spatio-temporal localization.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Interaction-Aware Prompting for Zero-Shot Spatio-Temporal Action Detection;2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW);2023-10-02

2. ReGen: A good Generative zero-shot video classifier should be Rewarded;2023 IEEE/CVF International Conference on Computer Vision (ICCV);2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3