OASIS: Only Adversarial Supervision for Semantic Image Synthesis

Author:

Sushko VadimORCID,Schönfeld Edgar,Zhang Dan,Gall Juergen,Schiele Bernt,Khoreva Anna

Abstract

AbstractDespite their recent successes, generative adversarial networks (GANs) for semantic image synthesis still suffer from poor image quality when trained with only adversarial supervision. Previously, additionally employing the VGG-based perceptual loss has helped to overcome this issue, significantly improving the synthesis quality, but at the same time limited the progress of GAN models for semantic image synthesis. In this work, we propose a novel, simplified GAN model, which needs only adversarial supervision to achieve high quality results. We re-design the discriminator as a semantic segmentation network, directly using the given semantic label maps as the ground truth for training. By providing stronger supervision to the discriminator as well as to the generator through spatially- and semantically-aware discriminator feedback, we are able to synthesize images of higher fidelity and with a better alignment to their input label maps, making the use of the perceptual loss superfluous. Furthermore, we enable high-quality multi-modal image synthesis through global and local sampling of a 3D noise tensor injected into the generator, which allows complete or partial image editing. We show that images synthesized by our model are more diverse and follow the color and texture distributions of real images more closely. We achieve a strong improvement in image synthesis quality over prior state-of-the-art models across the commonly used ADE20K, Cityscapes, and COCO-Stuff datasets using only adversarial supervision. In addition, we investigate semantic image synthesis under severe class imbalance and sparse annotations, which are common aspects in practical applications but were overlooked in prior works. To this end, we evaluate our model on LVIS, a dataset originally introduced for long-tailed object recognition. We thereby demonstrate high performance of our model in the sparse and unbalanced data regimes, achieved by means of the proposed 3D noise and the ability of our discriminator to balance class contributions directly in the loss function. Our code and pretrained models are available at https://github.com/boschresearch/OASIS.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Reference69 articles.

1. Alharbi, Y., & Wonka, P. (2020). Disentangled image generation through structured noise injection. In Conference on computer vision and pattern recognition (CVPR).

2. Arjovsky, M., & Bottou, L. (2017). Towards principled methods for training generative adversarial networks. In International Conference on Learning Representations (ICLR).

3. Badrinarayanan, V., Kendall, A., & Cipolla, R. (2016). Segnet: A deep convolutional encoder-decoder architecture for image segmentation. Transactions on Pattern Analysis and Machine Intelligence, 39, 2481–2495.

4. Brock, A., Donahue, J., & Simonyan, K. (2019). Large scale GAN training for high fidelity natural image synthesis. In International conference on learning representations (ICLR).

5. Bruna, J., Sprechmann, P., & LeCun, Y. (2016). Super-resolution with deep convolutional sufficient statistics. In International conference on learning representations (ICLR).

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3