A Broken FEEC Framework for Electromagnetic Problems on Mapped Multipatch Domains

Author:

Güçlü YamanORCID,Hadjout SaidORCID,Campos Pinto MartinORCID

Abstract

AbstractWe present a framework for the structure-preserving approximation of partial differential equations on mapped multipatch domains, extending the classical theory of finite element exterior calculus (FEEC) to discrete de Rham sequences which are broken, i.e., fully discontinuous across the patch interfaces. Following the Conforming/Nonconforming Galerkin (CONGA) schemes developed in Campos Pinto and Sonnendrücker (Math Comput 85:2651–2685, 2016) and Campos Pinto and Güçlü (Broken-FEEC discretizations and Hodge Laplace problems. arXiv:2109.02553, 2022), our approach is based on: (i) the identification of a conforming discrete de Rham sequence with stable commuting projection operators, (ii) the relaxation of the continuity constraints between patches, and (iii) the construction of conforming projections mapping back to the conforming subspaces, allowing to define discrete differentials on the broken sequence. This framework combines the advantages of conforming FEEC discretizations (e.g. commuting projections, discrete duality and Hodge–Helmholtz decompositions) with the data locality and implementation simplicity of interior penalty methods for discontinuous Galerkin discretizations. We apply it to several initial- and boundary-value problems, as well as eigenvalue problems arising in electromagnetics. In each case our formulations are shown to be well posed thanks to an appropriate stabilization of the jumps across the interfaces, and the solutions are extremely robust with respect to the stabilization parameter. Finally we describe a construction using tensor-product splines on mapped cartesian patches, and we detail the associated matrix operators. Our numerical experiments confirm the accuracy and stability of this discrete framework, and they allow us to verify that expected structure-preserving properties such as divergence or harmonic constraints are respected to floating-point accuracy.

Funder

Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,General Engineering,Theoretical Computer Science,Software,Applied Mathematics,Computational Mathematics,Numerical Analysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3