Author:
Christlieb Andrew J.,Gottlieb Sigal,Grant Zachary,Seal David C.
Funder
AFOSR
Air Force Office of Scientific Research
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,General Engineering,Theoretical Computer Science,Software,Applied Mathematics,Computational Mathematics,Numerical Analysis
Reference38 articles.
1. Balsara, D.S., Shu, C.-W.: Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. 160, 405–452 (2000)
2. Bresten, C., Gottlieb, S., Grant, Z., Higgs, D., Ketcheson, D.I., Németh, A.: Strong stability preserving multistep Runge–Kutta methods. Accept. Publ. Math. Comput
3. Chan, R.P.K., Tsai, A.Y.J.: On explicit two-derivative Runge–Kutta methods. Numer. Algorithms 53, 171–194 (2010)
4. Ferracina, L., Spijker, M.N.: Stepsize restrictions for the total-variation-diminishing property in general Runge–Kutta methods. SIAM J. Numer. Anal. 42, 1073–1093 (2004)
5. Ferracina, L., Spijker, M.N.: An extension and analysis of the Shu–Osher representation of Runge–Kutta methods. Math. Comput. 249, 201–219 (2005)
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献