Affiliation:
1. National Key Laboratory of Computational Fluid Dynamics, Beihang University, Beijing 100191, China
2. School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China
Abstract
In this study, we introduce the explicit strong stability preserving (SSP) two-derivative two-step Runge-Kutta (TDTSRK) methods. We propose the order conditions using Albrecht’s approach, comparing to the order conditions expressed in terms of rooted trees, these conditions present a more straightforward form with fewer equations. Furthermore, we develop the SSP theory for the TDTSRK methods under certain assumptions and identify its optimal parameters. We also conduct a comparative analysis of the SSP coefficient among TDTSRK methods, two-derivative Runge-Kutta (TDRK) methods, and Runge-Kutta (RK) methods, both theoretically and numerically. The comparison reveals that the TDTSRK methods in the same order of accuracy have the most effective SSP coefficient. Numerical results demonstrate that the TDTSRK methods are highly efficient in solving the partial differential equation, and the TDTSRK methods can achieve the expected order of accuracy.