On the Efficient Computation of Large Scale Singular Sums with Applications to Long-Range Forces in Crystal Lattices

Author:

Buchheit Andreas A.ORCID,Keßler TorstenORCID

Abstract

AbstractWe develop a new expansion for representing singular sums in terms of integrals and vice versa. This method provides a powerful tool for the efficient computation of large singular sums that appear in long-range interacting systems in condensed matter and quantum physics. It also offers a generalised trapezoidal rule for the precise computation of singular integrals. In both cases, the difference between sum and integral is approximated by derivatives of the non-singular factor of the summand function, where the coefficients in turn depend on the singularity. We show that for a physically meaningful set of functions, the error decays exponentially with the expansion order. For a fixed expansion order, the error decays algebraically both with the grid size, if the method is used for quadrature, or the characteristic length scale of the summand function in case the sum over a fixed grid is approximated by an integral. In absence of a singularity, the method reduces to the Euler–Maclaurin summation formula. We demonstrate the numerical performance of our new expansion by applying it to the computation of the full nonlinear long-range forces inside a domain wall in a macroscopic one-dimensional crystal with $$2\times 10^{10}$$ 2 × 10 10 particles. The code of our implementation in Mathematica is provided online. For particles that interact via the Coulomb repulsion, we demonstrate that finite size effects remain relevant even in the thermodynamic limit of macroscopic particle numbers. Our results show that widely-used continuum limits in condensed matter physics are not applicable for quantitative predictions in this case.

Funder

Universität des Saarlandes

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,General Engineering,Theoretical Computer Science,Software,Applied Mathematics,Computational Mathematics,Numerical Analysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3