Abstract
Abstract
We extend the classical Euler–Maclaurin (EM) expansion to sums over multidimensional lattices that involve functions with algebraic singularities. This offers a tool for a precise and fast evaluation of singular sums that appear in multidimensional long-range interacting systems. We find that the approximation error decays exponentially with the expansion order for band-limited functions and that the runtime is independent of the number of particles. First, the EM summation formula is generalised to lattices in higher dimensions, assuming a sufficiently regular summand function. We then develop this new expansion further and construct the singular Euler–Maclaurin expansion in higher dimensions, an extension of our previous work in one dimension, which remains applicable and useful even if the summand function includes a singular function factor. We connect our method to analytical number theory and show that all operator coefficients can be efficiently computed from derivatives of the Epstein zeta function. Finally we demonstrate the numerical performance of the expansion and efficiently compute singular lattice sums in infinite two-dimensional lattices, which are of relevance in condensed matter, statistical, and quantum physics. An implementation in mathematica is provided online along with this article.
Subject
Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献