Many-Stage Optimal Stabilized Runge–Kutta Methods for Hyperbolic Partial Differential Equations

Author:

Doehring DanielORCID,Gassner Gregor J.ORCID,Torrilhon ManuelORCID

Abstract

AbstractA novel optimization procedure for the generation of stability polynomials of stabilized explicit Runge–Kutta methods is devised. Intended for semidiscretizations of hyperbolic partial differential equations, the herein developed approach allows the optimization of stability polynomials with more than hundred stages. A potential application of these high degree stability polynomials are problems with locally varying characteristic speeds as found for non-uniformly refined meshes and spatially varying wave speeds. To demonstrate the applicability of the stability polynomials we construct 2N-storage many-stage Runge–Kutta methods that match their designed second order of accuracy when applied to a range of linear and nonlinear hyperbolic PDEs with smooth solutions. These methods are constructed to reduce the amplification of round off errors which becomes a significant concern for these many-stage methods.

Funder

Deutsche Forschungsgemeinschaft

RWTH Aachen University

Publisher

Springer Science and Business Media LLC

Reference99 articles.

1. Courant, R., Friedrichs, K., Lewy, H.: Über die partiellen Differenzengleichungen der mathematischen Physik. Mathematische Annalen 100, 32–74 (1928). https://doi.org/10.1007/BF01448839

2. Franklin, J.: Numerical stability in digital and analog computation for diffusion problems. J. Math. Phys. 37, 305–315 (1958)

3. Guillou, A., Lago, B.: Domaine de stabilité associé aux formules d’intégration numérique d’équations différentielles, a pas séparés et a pas liés. recherche de formules a grand rayon de stabilité, Ier Congr. Ass. Fran. Calcul., AFCAL, pp. 43–56 (1960)

4. Saul’ev, V.: Integration of parabolic equations by the grid method. Fizmatgiz Moscow 13, 14–19 (1960)

5. Applied Mathematics Series;GE Forsythe,1960

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3