Deep learning based on connected vehicles for icing pavement detection

Author:

Hu Jiajie,Huang Ming-Chun,Yu Xiong BillORCID

Abstract

AbstractSlippery road conditions, such as snowy, icy or slushy pavements, are one of the major threats to road safety in winter. The U.S. Department of Transportation (USDOT) spends over 20% of its maintenance budget on pavement maintenance in winter. However, despite extensive research, it remains a challenging task to monitor pavement conditions and detect slippery roadways in real time. Most existing studies have mainly explored indirect estimates based on pavement images and weather forecasts. The emerging connected vehicle (CV) technology offers the opportunity to map slippery road conditions in real time. This study proposes a CV-based slippery detection system that uses vehicles to acquire data and implements deep learning algorithms to predict pavements' slippery conditions. The system classifies pavement conditions into three major categories: dry, snowy and icy. Different pavement conditions reflect different levels of slipperiness: dry surface corresponds to the least slippery condition, and icy surface to the most slippery condition. In practice, more attention should be paid to the detected icy and snowy pavements when driving or implementing pavement maintenance and road operation in winter. The classification algorithm adopted in this study is Long Short-Term Memory (LSTM), which is an artificial Recurrent Neural Network (RNN). The LSTM model is trained with simulated CV data in VISSIM and optimized with a Bayesian algorithm. The system can achieve 100%, 99.06% and 98.02% prediction accuracy for dry pavement, snowy pavement and icy pavement, respectively. In addition, it is observed that potential accidents can be reduced by more than 90% if CVs can adjust their driving speed and maintain a greater distance from the leading vehicle after receiving a warning signal. Simulation results indicate that the proposed slippery detection system and the information sharing function based on the CV technology and deep learning algorithm (i.e., the LSTM network implemented in this study) are expected to deliver real-time detection of slippery pavement conditions, thus significantly eliminating the potential risk of accidents.

Publisher

Springer Science and Business Media LLC

Reference41 articles.

1. Ahn, C., Peng, H., & Tseng, H. E. (2011). Robust estimation of road frictional coefficient. IEEE Transactions on Control Systems Technology, 21(1), 1–13.

2. Andrey, J. C., Mills, B. E., & Vandermolen, J. (2001). Weather information and road safety.

3. Archer, J. (2005). Indicators for traffic safety assessment and prediction and their application in micro-simulation modelling: A study of urban and suburban intersections, KTH.

4. Asamer, J., van Zuylen, H. J., & Heilmann, B. (2013). Calibrating car-following parameters for snowy road conditions in the microscopic traffic simulator VISSIM. IET Intelligent Transport Systems, 7(1), 114–121.

5. ASTM. (2011). Standard test method for skid resistance of paved surfaces using a full-scale tire.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3