Abstract
Abstract
Adverse weather has a considerable impact on the behavior of drivers, which puts vehicles and drivers in hazardous situations that can easily cause traffic accidents. This research examines how drivers’ perceived risk changes during car following under different adverse weather conditions by using driving simulation experiment. An expressway road scenario was built in a driving simulator. Eleven types of weather conditions, including clear sky, four levels of fog, four levels of rain and two levels of snow, were designed. Furthermore, to simulate the car-following behavior, three car-following situations were designed according to the motion of the lead car. Seven car-following indicators were extracted based on risk homeostasis theory. Then, the entropy weight method was used to integrate the selected indicators into an index to represent the drivers’ perceived risk. Multiple linear regression was applied to measure the influence of adverse weather conditions on perceived risk, and the coefficients were considered as indicators. The results demonstrate that both the weather conditions and road type have significant effects on car-following behavior. Drivers’ perceived risk tends to increase with the worsening weather conditions. Under conditions of extremely poor visibility, such as heavy dense fog, the measured drivers’ perceived risk is low due to the difficulties in vehicle operation and limited visibility.
Funder
National Natural Science Foundation of China project
Science and Technology Program of Beijing
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Computer Science Applications,Mechanical Engineering,Transportation
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献