A comprehensive model of seismic velocities for the Bay of Mecklenburg (Baltic Sea) at the North German Basin margin: implications for basin development

Author:

Schnabel MichaelORCID,Noack VeraORCID,Ahlrichs NiklasORCID,Hübscher ChristianORCID

Abstract

AbstractThe geometry of sedimentary basins is normally described by the interpretation of seismic reflectors. In addition to that, rock properties of the sedimentary successions between these reflectors give further insight into the subsurface geology. Here, we present a model for the Bay of Mecklenburg, situated at the northeastern margin of the North German Basin. The model consists of eight layers; it covers seismic velocities of sediments from the Neogene down to the base of the Permian Zechstein. We use eight seismic profiles for model building and apply seismic migration velocity analysis in combination with pre-stack depth migration. The results are interval velocities down to a depth of 5000 m. A further aim of the study is to investigate the sensitivity of these indirectly deduced velocities in comparison to direct measurements within drill holes. The velocities from this study are in good agreement with earlier results from vertical seismic profiling at a nearby well. Cenozoic and Mesozoic strata within the Bay of Mecklenburg show clear depth-dependent velocity trends. A comparison of these trends with predicted compaction trends shows that burial anomalies within Lower Triassic units are significantly higher than in Upper Cretaceous units. This finding could be explained by a greater amount of erosion during Upper Jurassic/Lower Cretaceous times than during Cenozoic times. The Zechstein layer shows a decreasing interval velocity with increasing thickness. Our study demonstrates that seismic velocities deduced from surface-based measurements are of high value in areas with sparse drilling coverage.

Funder

Bundesanstalt für Geowissenschaften und Rohstoffe (BGR)

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology,Environmental Science (miscellaneous),Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3