Utility of whole exome sequencing analysis in differentiating intrapulmonary metastatic multiple ground-glass nodules (GGNs) from multiple primary GGNs

Author:

Zhou Dong,Liu Quan-Xing,Li Man-yuan,Hou Bin,Yang Gui-xue,Lu Xiao,Zheng Hong,Jiang Li,Dai Ji-GangORCID

Abstract

Abstract Purpose Clinical evidence of metastasis with ground-glass nodules (GGNs) has been reported, including pulmonary metastasis and distant metastasis. However, the clonal relationships of multiple GGNs at the genetic level remain unclear. Experimental design Sixty tissue specimens were obtained from 19 patients with multiple GGN lung cancer who underwent surgery in 2019. Whole exome sequencing (WES) was performed on tissue samples, and genomic profiling and clone evolution analysis were conducted to investigate the genetic characteristics and clonality of multiple GGNs. Results A total of 15,435 nonsynonymous mutations were identified by WES, and GGNs with shared nonsynonymous mutations were observed in seven patients. Copy number variant (CNV) analysis showed that GGNs in ten patients had at least one shared arm-level CNV. Mutational spectrum analysis showed that GGNs in three patients had similar six substitution profiles and GGNs in fou patients had similar 96 substitution profiles. According to the clone evolution analysis, we found that GGNs in five patients had shared clonal driver gene mutations. Taken together, we identified that 5 patients may have multiple primary GGNs without any similar genetic features, 2 patients may have intrapulmonary metastatic GGNs with ≥ 3 similar genetic features, and the other 12 patients cannot be determined due to insufficient evidences in our cohort. Conclusions Our findings suggest that the intrapulmonary metastasis exist in multiple GGNs, but the number of GGNs was not associated with the probability of metastasis. Application of genomic profiling may prove to be important to precise management of patients with multiple GGNs.

Funder

National Natural Science Foundation of China

Clinical research Foundation of Army Medical University

Publisher

Springer Science and Business Media LLC

Subject

Oncology,Hematology,General Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3