Funder
the Key Program of National Natural Science Foundation of China
Shandong Key S&T Innovation Engineering Project
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Reference39 articles.
1. Soule A, Salamatian K, Taft N (2005) Combining filtering and statistical methods for anomaly detection. IMC
2. Yanhua Y, Meina S, Wenting Z, Junde S (2011) A dynamic compuation approach to determining the threshold in network anomaly detection. J Beijing Univ Posts Telecommun 34(2):45–49
3. Eswaran S, Honnavalli P, Honnavalli P (2021) A threshold-based, real-time analysis in early detection of endpoint anomalies using SIEM expertise. Netw Secur 4:7–16. https://doi.org/10.1016/S1353-4858(21)00039-8
4. Zhen Y, Liu XD, Li T, Wu D, Wang JJ, Zhao YW, Han H (2022) A systematic literature review of methods and datasets for anomaly-based network intrusion detection. Comput Secur 102675:0167–4048. https://doi.org/10.1016/j.cose.2022.102675
5. Mauro MD, Galatro G, Fortino G, Liotta A (2021) Supervised feature selection techniques in network intrusion detection: a critical review. Eng Appl Artif Intell 101:104216. https://doi.org/10.1016/j.engappai.2021.104216
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献