Corrector LSTM: built-in training data correction for improved time-series forecasting

Author:

Baghoussi YassineORCID,Soares Carlos,Mendes-Moreira João

Abstract

AbstractTraditional recurrent neural networks (RNNs) are essential for processing time-series data. However, they function as read-only models, lacking the ability to directly modify the data they learn from. In this study, we introduce the corrector long short-term memory (cLSTM), a Read & Write LSTM architecture that not only learns from the data but also dynamically adjusts it when necessary. The cLSTM model leverages two key components: (a) predicting LSTM’s cell states using Seasonal Autoregressive Integrated Moving Average (SARIMA) and (b) refining the training data based on discrepancies between actual and forecasted cell states. Our empirical validation demonstrates that cLSTM surpasses read-only LSTM models in forecasting accuracy across the Numenta Anomaly Benchmark (NAB) and M4 Competition datasets. Additionally, cLSTM exhibits superior performance in anomaly detection compared to hierarchical temporal memory (HTM) models.

Funder

Universidade do Porto

Publisher

Springer Science and Business Media LLC

Reference56 articles.

1. Yin W, Kann K, Yu M, Schütze H (2017) Comparative study of CNN and RNN for natural language processing. CoRR arXiv:1702.01923

2. Zhou C, Sun C, Liu Z, Lau FCM (2015) A C-LSTM neural network for text classification. CoRR arXiv:1511.08630

3. Graves A, Mohamed A-r, Hinton G (2013) Speech recognition with deep recurrent neural networks. In: 2013 IEEE international conference on acoustics, speech and signal processing, IEEE, pp 6645–6649

4. Zaytar MA, El Amrani C (2016) Sequence to sequence weather forecasting with long short-term memory recurrent neural networks. Int J Comput Appl 143(11):7–11

5. Siami-Namini S, Tavakoli N, Namin AS (2019) The performance of lstm and bilstm in forecasting time series. In: 2019 IEEE international conference on big data (Big Data), IEEE, pp 3285–3292

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3