Canola productivity and carbon footprint under different cropping systems in eastern Canada

Author:

Ma Bao-LuoORCID,Liang Chang,Herath Aruna,Caldwell C. D.,Smith Donald L.

Abstract

AbstractDiversified crop rotation with an appropriate sequence may be a promising strategy for increasing crop productivity while reducing greenhouse gas emissions (GHGs) and lowering carbon (C) footprint for more sustainable agricultural systems. The objectives of this study were to (i) assess the agronomic performance and C footprint of canola (Brassica napus L.) production in different cropping systems, and (ii) better understand how canola could be adapted to existing cropping systems in eastern Canada. A four-year canola-based phase rotation study, including maize (Zea mays L.), wheat (Triticum aestivum L.), and soybean (Glycine max L.), started in 2011 and continued for two cycles in Ottawa, ON; Montreal, QC; and Canning, NS. It was found that, compared to continuous monoculture (canola, maize or wheat), diversified cropping systems increased crop yields by an average of 32% and reduced the C footprint of all rotations by 33%, except under severe heat and drought conditions. The effect of rotation on yield and C footprint of canola production varied significantly among site-years. At Ottawa, the canola following soybean (SC) had 12% higher canola yield than monoculture canola (CC), 5 and 8% higher canola yield than canola following wheat (WC) or maize (MC). At Montreal, canola yield ranked as MC > SC > WC > CC. At Canning, the highest canola yield was in WC (21%) and SC (13%). Overall, most SC rotations had the lowest C footprint, and CC cropping had the highest C footprint, with only a few exceptions. Regardless of the cropping system, canola required more N input and was high in oil and protein in the harvested product, and produced the highest C footprint, while soybean had the lowest C footprint at all three sites. Our findings indicate that a diversified cropping system with canola production following soybean significantly improved canola yield while lowering the C footprint. However, profitable and sustainable canola production in eastern Canada is threatened by climate change-induced drought and heat stress.

Funder

Agriculture and Agri-Food Canada

Agriculture & Agri-Food Canada

Publisher

Springer Science and Business Media LLC

Subject

Soil Science,Agronomy and Crop Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3