Changes in leaf nitrogen and phosphorus content, photosynthesis, respiration, growth, and resource use efficiency of a rapeseed cultivar as affected by drought and high temperatures

Author:

Biswas D.K.12,Ma B.L.12,Morrison M.J.12

Affiliation:

1. Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada

2. Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.

Abstract

The objective of this study was to explore the changes in leaf nitrogen (N) and phosphorus (P) content, physiological processes, growth, and resource-use efficiency in a rapeseed cultivar under drought and (or) high temperatures. The two-wk-old plants were grown under controlled growth chamber conditions and subjected to individual or combined water (well-irrigated, 88% ± 4% field capacity vs. drought, 46% ± 5% field capacity) and temperature (control, 23 °C/17 °C vs. high temperatures, 26 °C/25 °C) regimes for 10 d. The measured response parameters were [N], [P], and their total content in leaves, photosynthetic rate (Asat), stomatal conductance (gs), intercellular CO2 concentration (Ci), mitochondrial respiration (R), intrinsic water use efficiency (WUEi), photosynthetic N use efficiency (PNUE), relative growth rate of the root (RGRr) and shoot (RGRs), leaf area, and dry matter accumulation in the plant. Drought significantly decreased [N], [P], and their total content in leaves, Asat, gs, Ci, RGRr, RGRs, leaf area, dry matter accumulation in the root, shoot, and whole plant, and PNUE, but significantly increased R and WUEi. Drought-induced reduction in growth or Asat was mainly attributed to a decreased Ci due to stomatal closure, while reduction in gs and leaf area appeared to be a drought-adaptive mechanism. High temperature stress alone had no negative impact on physiological and growth parameters, indicating an enhanced thermal stability of the cultivar, which was diminished at combined drought and high temperature stresses. We therefore conclude that the thermal stability of the cultivar in terms of growth was compromised under simultaneous occurrence of drought and high temperature stresses.

Publisher

Canadian Science Publishing

Subject

Horticulture,Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3