Split N application and DMP based nitrification inhibitors mitigate N2O losses in a soil cropped with winter wheat

Author:

Guzman-Bustamante IvanORCID,Schulz Rudolf,Müller TorstenORCID,Ruser ReinerORCID

Abstract

AbstractNitrogen (N) fertilization to crops might lead to formation and release of reactive N—e.g. nitrate, ammonium, ammonia, nitrous oxide (N2O) —, contributing to eutrophication, atmospheric pollution, and climate change. Use of nitrification inhibitors and splitting of N fertilizer may reduce the N2O emission from arable soils cropped with winter wheat. We tested different N fertilizers treated with 3,4-dimethylpyrazol phosphate (DMPP) and 3,4-dimethylpyrazol succinic acid (DMPSA) by applying 180 kg N ha−1 in different N splitting strategies in a full annual field experiment on a loamy soil in Southwest Germany. A threefold split fertilization led to an emission of 2.3 kg N2O–N ha−1 a−1 (corresponding to a reduction of 19%) compared to a single application of ammonium sulphate nitrate (ASN) (p = 0.07). A single application rate of ASN with DMPP resulted in an emission of 1.9 kg N2O–N ha−1 a−1 and reduced N2O emissions from an ASN treatment without NI by 33%. Calcium ammonium nitrate (CAN) with DMPSA reduced N2O emissions during the vegetation period by 38% compared to CAN without a nitrification inhibitor, but this was offset by high emissions after harvest, which was driven by soil tillage with an annual reduction of 26% (CAN: 2.9 kg N2O–N ha−1 a−1; CAN + DMPSA: 2.1 kg N2O–N ha−1 a−1; p = 0.11). Among our tested treatments, a twofold split application of ASN with DMPP efficiently reduced N2O emissions and maintained grain yield when compared to the traditional system with threefold application without nitrification inhibitor. Despite resulting in lower protein contents in the twofold split application, this treatment should be further investigated as a potential compromise between wheat yield and quality optimization and climate protection.

Funder

EuroChem Agro GmbH

Universität Hohenheim

Publisher

Springer Science and Business Media LLC

Subject

Soil Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3