Organic matter amendments improve soil fertility in almond orchards of contrasting soil texture

Author:

Villa Yocelyn B.,Khalsa Sat Darshan S.,Ryals Rebecca,Duncan Roger A.,Brown Patrick H.,Hart Stephen C.

Abstract

AbstractThe effects of organic matter amendments (OMA) on soil fertility in permanent cropping systems like orchards is under-studied compared to annual cropping systems. We evaluated experimentally the impact of OMAs on soil fertility in almond (Prunus dulcis) orchards over a two-year period with annual applications. Two OMAs, derived from composted green waste (GWC) or composted manure wood chips (MWC), were applied as surface mulch and compared to a control at two sites with different soil textures (sandy loam and loamy sand). OMAs increased soil moisture content (0–0.1 m depth) at both sites by 27–37%. Both amendments increased soil inorganic N at the sandy loam (GWC: 194%; MWC: 114%) and loamy sand (GWC: 277%; MWC: 114%) sites the month following application, but soil inorganic N concentrations quickly decreased to values similar to those of control plots. After two-years, the GWC and the MWC amendments increased the soil cation exchange capacity (CEC) by 112% and 29%, respectively, in the sandy loam site, but no change was observed in the loamy sand site. The greatest increase in soil extractable K occurred in the GWC-amended plots at the sandy loam site even though the initial K concentration of MWC was higher. Both OMAs increased soil organic carbon (SOC) after two years, but the SOC increase in the GWC-amended plots was greater. Our results suggest that OMAs can significantly improve soil fertility after one or two annual applications, and that fertility gains appear to be dependent on soil texture than the nutrient concentrations of the OMA.

Funder

Almond Board of California

California Department of Food and Agriculture

Publisher

Springer Science and Business Media LLC

Subject

Soil Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3