Classification of COVID-19 from tuberculosis and pneumonia using deep learning techniques
Author:
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Biomedical Engineering
Link
https://link.springer.com/content/pdf/10.1007/s11517-022-02632-x.pdf
Reference35 articles.
1. Kumar P, Bhatnagar R, Gaur K, Bhatnagar A (2021) Classification of imbalanced data: review of methods and applications. In IOP conference series: materials science and engineering, vol 1099, No. 1. IOP Publishing, p 012077
2. Foody GM, McCulloch MB, Yates WB (1995) The effect of training set size and composition on artificial neural network classification. Int J Remote Sens 16(9):1707–1723
3. Shelke A, Inamdar M, Shah V, Tiwari A, Hussain A, Chafekar T, Mehendale N (2021) Chest X-ray classification using deep learning for automated COVID-19 screening. SN Comput Sci 2(4):1–9
4. Rahman T, Chowdhury ME, Khandakar A, Islam KR, Islam KF, Mahbub ZB et al (2020) Transfer learning with deep convolutional neural network (CNN) for pneumonia detection using chest X-ray. Appl Sci 10(9):3233
5. Kermany DS, Goldbaum M, Cai W, Valentim CC, Liang H, Baxter SL et al (2018) Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172(5):1122–1131
Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A novel NASNet model with LIME explanability for lung disease classification;Biomedical Signal Processing and Control;2024-07
2. Conditional adversarial segmentation and deep learning approach for skin lesion sub-typing from dermoscopic images;Neural Computing and Applications;2024-05-27
3. COVID-19 classification in X-ray/CT images using pretrained deep learning schemes;Multimedia Tools and Applications;2024-03-14
4. A mathematical model to assess the effectiveness of test-trace-isolate-and-quarantine under limited capacities;PLOS ONE;2024-03-12
5. Multi-modal deep learning methods for classification of chest diseases using different medical imaging and cough sounds;PLOS ONE;2024-03-12
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3