Training High-Order Takagi-Sugeno Fuzzy Systems Using Batch Least Squares and Particle Swarm Optimization

Author:

Wiktorowicz KrzysztofORCID,Krzeszowski TomaszORCID

Abstract

AbstractThis paper proposes two methods for training Takagi–Sugeno (T-S) fuzzy systems using batch least squares (BLS) and particle swarm optimization (PSO). The T-S system is considered with triangular and Gaussian membership functions in the antecedents and higher-order polynomials in the consequents of fuzzy rules. In the first method, the BLS determines the polynomials in a system in which the fuzzy sets are known. In the second method, the PSO algorithm determines the fuzzy sets, whereas the BLS determines the polynomials. In this paper, the ridge regression is used to stabilize the solution when the problem is close to the singularity. Thanks to this, the proposed methods can be applied when the number of observations is less than the number of predictors. Moreover, the leave-one-out cross-validation is used to avoid overfitting and this way to choose the structure of a fuzzy model. A method of obtaining piecewise linear regression by means of the zero-order T-S system is also presented.

Funder

Polish Ministry of Science and Higher Education

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computational Theory and Mathematics,Theoretical Computer Science,Software

Reference33 articles.

1. Alfi, A., Fateh, M.M.: Intelligent identification and control using improved fuzzy particle swarm optimization. Expert Syst. Appl. 38(10), 12312–12317 (2011)

2. Arlot, S., Celisse, A.: A survey of cross-validation procedures for model selection. Stat. Surv. 4, 40–79 (2010)

3. Bishop, C.M.: Pattern recognition and machine learning. Information science and statistics. Springer-Verlag, Inc, New York (2006)

4. Boulkaibet, I., Belarbi, K., Bououden, S., Marwala, T., Chadli, M.: A new T-S fuzzy model predictive control for nonlinear processes. Expert Syst. Appl. 88, 132–151 (2017). https://doi.org/10.1016/j.eswa.2017.06.039

5. Chen, C., Liu, Y.: Enhanced ant colony optimization with dynamic mutation and ad hoc initialization for improving the design of TSK-type fuzzy system. Comput. Int. Neurosci. 2018, 1–15 (2018)

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3