1. Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2009). https://doi.org/10.1515/9781400830244
2. Agrawal, S., Jia, R.: Optimistic posterior sampling for reinforcement learning: worst-case regret bounds. In: Advances in Neural Information Processing Systems, vol. 30, pp. 1184–1194. Curran Associates, Inc. (2017)
3. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends® Mach. Learn. 3(1), 1–122 (2011). https://doi.org/10.1561/2200000016
4. Cai, Z., Li, R., Zhu, L.: Online sufficient dimension reduction through sliced inverse regression. J. Mach. Learn. Res. 21(10), 1–25 (2020)
5. Caldas, S., Duddu, S.M.K., Wu, P., Li, T., Konečný, J., McMahan, H.B., Smith, V., Talwalkar, A.: Leaf: A benchmark for federated settings. arXiv preprint arXiv:1812.01097 (2019)