1. McMahan, H.B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-Efficient learning of deep networks from decentralized data (2016). arXiv. 1602.05629
2. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and applications. ACM Trans. Intell. Syst. Technol. (TIST) 10(2), 12 (2019)
3. Pfitzner, B., Steckhan, N., Bert Arnrich, B.: Federated learning in a medical context: a systematic literature review. ACM Trans. Internet Technol. 21(2), 31 (2021)
4. Jin, Y., Wei, X., Liu, Y.: Qiang Yang. Towards utilizing unlabeled data in federated learning, A survey and prospective (2020)
5. Prayitno.: A systematic review of federated learning in the healthcare area: from the perspective of data properties and applications. Appl. Sci. 11, 11191 (2021). https://doi.org/10.3390/app112311191