Nonparametric semi-supervised classification with application to signal detection in high energy physics

Author:

Casa Alessandro,Menardi GiovannaORCID

Abstract

AbstractModel-independent searches in particle physics aim at completing our knowledge of the universe by looking for new possible particles not predicted by the current theories. Such particles, referred to as signal, are expected to behave as a deviation from the background, representing the known physics. Information available on the background can be incorporated in the search, in order to identify potential anomalies. From a statistical perspective, the problem is recasted to a peculiar classification one where only partial information is accessible. Therefore a semi-supervised approach shall be adopted, either by strengthening or by relaxing assumptions underlying clustering or classification methods respectively. In this work, following the first route, we semi-supervise nonparametric clustering in order to identify a possible signal. The main contribution consists in tuning a nonparametric estimate of the density underlying the experimental data to identify a partition which guarantees a signal warning while allowing for an accurate classification of the background. As a side contribution, a variable selection procedure is presented. The whole procedure is tested on a dataset mimicking proton–proton collisions performed within a particle accelerator. While finding motivation in the field of particle physics, the approach is applicable to various science domains, where similar problems of anomaly detection arise.

Funder

Horizon 2020

Università degli Studi di Padova

Publisher

Springer Science and Business Media LLC

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3