Abstract
AbstractModel-independent searches in particle physics aim at completing our knowledge of the universe by looking for new possible particles not predicted by the current theories. Such particles, referred to as signal, are expected to behave as a deviation from the background, representing the known physics. Information available on the background can be incorporated in the search, in order to identify potential anomalies. From a statistical perspective, the problem is recasted to a peculiar classification one where only partial information is accessible. Therefore a semi-supervised approach shall be adopted, either by strengthening or by relaxing assumptions underlying clustering or classification methods respectively. In this work, following the first route, we semi-supervise nonparametric clustering in order to identify a possible signal. The main contribution consists in tuning a nonparametric estimate of the density underlying the experimental data to identify a partition which guarantees a signal warning while allowing for an accurate classification of the background. As a side contribution, a variable selection procedure is presented. The whole procedure is tested on a dataset mimicking proton–proton collisions performed within a particle accelerator. While finding motivation in the field of particle physics, the approach is applicable to various science domains, where similar problems of anomaly detection arise.
Funder
Horizon 2020
Università degli Studi di Padova
Publisher
Springer Science and Business Media LLC
Subject
Statistics, Probability and Uncertainty,Statistics and Probability
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献