Locating $$\gamma$$-ray sources on the celestial sphere via modal clustering

Author:

Montin Anna,Brazzale Alessandra R.ORCID,Menardi Giovanna,Sottosanti Andrea

Abstract

AbstractSky surveys represent the fundamental data basis for detecting and locating as yet undiscovered celestial objects. Since 2008, the Fermi LAT Collaboration has catalogued thousands of $$\gamma$$ γ -ray sources with the aim of extending our knowledge of the highly energetic physical mechanisms and processes that lie at the core of our Universe. In this article, we present a nonparametric clustering algorithm which identifies high-energy astronomical sources using the spatial information of the $$\gamma$$ γ -ray photons detected by the large area telescope onboard the Fermi spacecraft. In particular, the sources are identified using a von Mises–Fisher kernel estimate of the photon count density on the unit sphere via an adjustment of the mean-shift algorithm which accounts for the directional nature of the collected data and the need of local smoothing. This choice entails a number of desirable benefits. It allows us to bypass the difficulties inherent on the borders of any projection of the photon directions onto a 2-dimensional plane, while guaranteeing high flexibility. The smoothing parameter is chosen adaptively, by combining scientific input with optimal selection guidelines, as known from the literature. Using statistical tools from hypothesis testing and classification, we furthermore present an automatic way to skim off sound candidate sources from the $$\gamma$$ γ -ray emitting diffuse background and to quantify their significance. We calibrate and test our algorithm on simulated count maps provided by the Fermi LAT Collaboration.

Funder

Università degli Studi di Padova

Publisher

Springer Science and Business Media LLC

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3