A block coordinate descent method for sensor network localization

Author:

Nishijima MitsuhiroORCID,Nakata KazuhideORCID

Abstract

AbstractThe problem of sensor network localization (SNL) can be formulated as a semidefinite programming problem with a rank constraint. We propose a new method for solving such SNL problems. We factorize a semidefinite matrix with the rank constraint into a product of two matrices via the Burer–Monteiro factorization. Then, we add the difference of the two matrices, with a penalty parameter, to the objective function, thereby reformulating SNL as an unconstrained multiconvex optimization problem, to which we apply the block coordinate descent method. In this paper, we also provide theoretical analyses of the proposed method and show that each subproblem that is solved sequentially by the block coordinate descent method can also be solved analytically, with the sequence generated by our proposed algorithm converging to a stationary point of the objective function. We also give a range of the penalty parameter for which the two matrices used in the factorization agree at any accumulation point. Numerical experiments confirm that the proposed method does inherit the rank constraint and that it estimates sensor positions faster than other methods without sacrificing the estimation accuracy, especially when the measured distances contain errors.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Control and Optimization

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On convergence of a q-random coordinate constrained algorithm for non-convex problems;Journal of Global Optimization;2024-09-12

2. GENERALIZATIONS OF DOUBLY NONNEGATIVE CONES AND THEIR COMPARISON;Journal of the Operations Research Society of Japan;2024-07-31

3. Intelligent Technology in Geometric Design;Computer Science and Engineering in Health Services;2023-09-24

4. Approximation hierarchies for copositive cone over symmetric cone and their comparison;Journal of Global Optimization;2023-08-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3