Approximation hierarchies for copositive cone over symmetric cone and their comparison

Author:

Nishijima MitsuhiroORCID,Nakata KazuhideORCID

Abstract

AbstractWe first provide an inner-approximation hierarchy described by a sum-of-squares (SOS) constraint for the copositive (COP) cone over a general symmetric cone. The hierarchy is a generalization of that proposed by Parrilo (Structured semidefinite programs and semialgebraic geometry methods in Robustness and optimization, Ph.D. Thesis, California Institute of Technology, Pasadena, CA, 2000) for the usual COP cone (over a nonnegative orthant). We also discuss its dual. Second, we characterize the COP cone over a symmetric cone using the usual COP cone. By replacing the usual COP cone appearing in this characterization with the inner- or outer-approximation hierarchy provided by de Klerk and Pasechnik (SIAM J Optim 12(4):875–892,https://doi.org/10.1137/S1052623401383248, 2002) or Yıldırım (Optim Methods Softw 27(1):155–173,https://doi.org/10.1080/10556788.2010.540014, 2012), we obtain an inner- or outer-approximation hierarchy described by semidefinite but not by SOS constraints for the COP matrix cone over the direct product of a nonnegative orthant and a second-order cone. We then compare them with the existing hierarchies provided by Zuluaga et al. (SIAM J Optim 16(4):1076–1091,https://doi.org/10.1137/03060151X, 2006) and Lasserre (Math Program 144:265–276,https://doi.org/10.1007/s10107-013-0632-5, 2014). Theoretical and numerical examinations imply that we can numerically increase a depth parameter, which determines an approximation accuracy, in the approximation hierarchies derived from de Klerk and Pasechnik (SIAM J Optim 12(4):875–892,https://doi.org/10.1137/S1052623401383248, 2002) and Yıldırım (Optim Methods Softw 27(1):155–173,https://doi.org/10.1080/10556788.2010.540014, 2012), particularly when the nonnegative orthant is small. In such a case, the approximation hierarchy derived from Yıldırım (Optim Methods Softw 27(1):155–173,https://doi.org/10.1080/10556788.2010.540014, 2012) can yield nearly optimal values numerically. Combining the proposed approximation hierarchies with existing ones, we can evaluate the optimal value of COP programming problems more accurately and efficiently.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Management Science and Operations Research,Control and Optimization,Computer Science Applications,Business, Management and Accounting (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GENERALIZATIONS OF DOUBLY NONNEGATIVE CONES AND THEIR COMPARISON;Journal of the Operations Research Society of Japan;2024-07-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3