Funder
The University of Melbourne
Publisher
Springer Science and Business Media LLC
Reference35 articles.
1. Dwork, C., Mcsherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) Theory of Cryptography, pp. 265–284. Springer, Berlin (2006)
2. Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Found. Trends Theor. Comput. Sci. 9(3–4), 211–407 (2014)
3. Kairouz, P., Oh, S., Viswanath, P.: Extremal mechanisms for local differential privacy. J. Mach. Learn. Res. 17(1), 492–542 (2016)
4. Dewri, R.: Local differential perturbations: Location privacy under approximate knowledge attackers. IEEE Trans. Mobile Comput. 12(12), 2360–2372 (2013)
5. Duchi,J. C., Jordan,M. I., Wainwright,M. J.: “Local privacy and statistical minimax rates,” In: 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pp. 429–438, (2013)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献