Author:
Ahmed Moushira Abdallah Mohamed,Wu Shuhui,Dushime Laure Deveriane,Tao Yuanhong
Abstract
The emerging of shuffle model has attracted considerable attention of scientists owing to his unique properties in solving the privacy problems in federated learning, specifically the trade off problem between privacy and utility in central and local model. Where, the central model relies on a trusted server which collects users’ raw data and then perturbs it. While in the local model all users perturb their data locally then they send their perturbed data to server. Both models have pron and con. The server in central model enjoys with high accuracy but the users suffer from insufficient privacy in contrast, the local model which provides sufficient privacy at users’ side but the server suffers from limited accuracy. Shuffle model has advanced property of hide position of input messages by perturbing it with perturbation π. Therefore, the scientists considered on adding shuffle model between users and servers to make the server untrusted where the users communicate with the server through the shuffle and boosting the privacy by adding perturbation π for users’ messages without increasing the noise level. Consequently, the usage of modified technique differential privacy federated learning with shuffle model will explores the gap between privacy and accuracy in both models. So this new model attracted many researchers in recent work. In this review, we initiate the analytic learning of a shuffled model for distributed differentially private mechanisms. We focused on the role of shuffle model for solving the problem between privacy and accuracy by summarizing the recent researches about shuffle model and its practical results. Furthermore, we present two types of shuffle, single shuffle and m shuffles with the statistical analysis for each one in boosting the privacy amplification of users with the same level of accuracy by reasoning the practical results of recent papers.
Publisher
Granthaalayah Publications and Printers
Reference53 articles.
1. Aledhari M., Razzak R., Parizi R., Saeed F. (2020), Federated learning: a survey on enabling technologies, protocols, and applications, IEEE Access, 8, 140699-140725. Retreived from https://doi.org/10.1109/ACCESS.2020.3013541
2. Amos B., Kobbi N., and Eran O. (2008), Distributed private data analysis: Simultaneously solving how and what, 28th Annual International Cryptology Conference, Springer, 5157, 451-468.
3. Amos Beimel., Iftach Haitner., Kobbi Nissim. (2020), Uri Stemmer., On the Round Complexity of the Shuffle Model, arXiv: 2009.13510. Retreived from https://doi.org/10.1007/978-3-030-64378-2_24
4. Balcer V., Cheu A. (2019), Separating local & shuffled differential privacy via histograms, arXiv: 1911.06879.
5. Balle B., Barthe G., Gaboardi M. (2018), Privacy amplification by sub sampling: Tight analyses via couplings and divergences, ArXiv:1807.01647.