Real-time road safety optimization through network-level data management

Author:

Muthugama LakmalORCID,Xie HairuoORCID,Tanin Egemen,Karunasekera Shanika

Abstract

AbstractWith the increasing connectedness of vehicles, real-time spatio-temporal data can be collected from citywide road networks. Innovative data management solutions can process the collected data for the purpose of reducing travel time. However, a majority of the existing solutions have missed the opportunity to better manage the collected data for improving road safety at the network level. We propose an efficient data management framework that uses network-level data to improve road safety for citywide applications. Our framework uses a graph-based data structure to maintain real-time network-level traffic data. Based on the graph, the framework uses a novel technique to generate driving instructions for individual vehicles. By following the instructions, inter-vehicular spacing can be increased, leading to an improvement of road safety. Experimental results show that our framework improves road safety, measured based on the time to collision between vehicles, from the state-of-the-art traffic data management solutions by a large margin while achieving lower travel times compared with the solutions. The framework is also readily deployable for large-scale real-time applications due to its low computation costs.

Funder

University of Melbourne

Publisher

Springer Science and Business Media LLC

Subject

Geography, Planning and Development,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Real-time combined safety-mobility assessment using self-driving vehicles collected data;Accident Analysis & Prevention;2024-05

2. Concurrent optimization of safety and traffic flow using deep reinforcement learning for autonomous intersection management;Proceedings of the 30th International Conference on Advances in Geographic Information Systems;2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3