χ(2) nonlinear photonics in integrated microresonators
-
Published:2023-07-17
Issue:1
Volume:16
Page:
-
ISSN:2095-2767
-
Container-title:Frontiers of Optoelectronics
-
language:en
-
Short-container-title:Front. Optoelectron.
Author:
Liu Pengfei,Wen Hao,Ren Linhao,Shi Lei,Zhang Xinliang
Abstract
AbstractSecond-order (χ(2)) optical nonlinearity is one of the most common mechanisms for modulating and generating coherent light in photonic devices. Due to strong photon confinement and long photon lifetime, integrated microresonators have emerged as an ideal platform for investigation of nonlinear optical effects. However, existing silicon-based materials lack a χ(2) response due to their centrosymmetric structures. A variety of novel material platforms possessing χ(2) nonlinearity have been developed over the past two decades. This review comprehensively summarizes the progress of second-order nonlinear optical effects in integrated microresonators. First, the basic principles of χ(2) nonlinear effects are introduced. Afterward, we highlight the commonly used χ(2) nonlinear optical materials, including their material properties and respective functional devices. We also discuss the prospects and challenges of utilizing χ(2) nonlinearity in the field of integrated microcavity photonics.
Graphical Abstract
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials
Reference279 articles.
1. Franken, P.A., Hill, A.E., Peters, C.W., Weinreich, G.: Generation of optical harmonics. Phys. Rev. Lett. 7(4), 118–119 (1961) 2. Shen, Y.R.: Surface properties probed by second-harmonic and sum-frequency generation. Nature 337(6207), 519–525 (1989) 3. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390(6660), 575–579 (1997) 4. Vodopyanov, K.L., Fejer, M.M., Yu, X., Harris, J.S., Lee, Y.S., Hurlbut, W.C., Kozlov, V.G., Bliss, D., Lynch, C.: Terahertz-wave generation in quasi-phase-matched GaAs. Appl. Phys. Lett. 89(14), 141119 (2006) 5. He, J., Chen, H., Hu, J., Zhou, J., Zhang, Y., Kovach, A., Sideris, C., Harrison, M.C., Zhao, Y., Armani, A.M.: Nonlinear nanophotonic devices in the ultraviolet to visible wavelength range. Nanophotonics 9(12), 3781–3804 (2020)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|