Analysis of dimensional accuracy for micro-milled areal material measures with kinematic simulation

Author:

Klauer Katja,Eifler Matthias,Kirsch Benjamin,Böß Volker,Seewig Jörg,Aurich Jan C.

Abstract

AbstractThe calibration of areal surface topography measuring instruments is of high relevance to estimate the measurement uncertainty and to guarantee the traceability of the measurement results. Calibration structures for optical measuring instruments must be sufficiently small to determine the limits of the instruments.Besides other methods, micro-milling is a suitable process for manufacturing areal material measures. For the manufacturing by micro-milling with ball end mills, the tool radius (effective cutter radius) is the corresponding limiting factor: if the tool radius is too large to penetrate the concave profile details without removing the surrounding material, deviations from the target geometry will occur. These deviations can be detected and excluded before experimental manufacturing with the aid of a kinematic simulation.In this study, a kinematic simulation model for the prediction of the dimensional accuracy of micro-milled areal material measures is developed and validated. Subsequently, a radius study is conducted to determine how the tool radius r of the tool influences the dimensional accuracy of an areal crossed sinusoidal (ACS) geometry according to ISO 25178-70 [1] with a defined amplitude d and period length p. The resulting theoretical surface texture parameters are evaluated and compared to the target values. It was shown that the surface texture parameters deviate from the nominal values depending on the effective cutter radius used. Based on the results of the study, it can be determined with which effective tool radius the measurands Sa and Sq of the material measures are best met. The ideal effective radius for the application considered is between 50 and 75 μm.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Manufacturing of Areal Material Measures;Component Surfaces;2023-09-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3