Abstract
AbstractPowder interlayer bonding (PIB) is a novel joining technique, which has been developed to facilitate high-integrity repairs of aerospace components, manufactured from commonly used titanium alloys. The PIB technique utilises an interlayer between complex geometric components which are mated under pressure and a highly localised heating source. In this study, induction heating enabled bonding in an inert fusion zone by use of an oxygen-displacing shielding gas, with particular attention to the initial heating and pressure application. These early stages proved crucial to the elimination of pores and consolidation of the alloy powder, with porosity volume fraction reduced to just 0.5% after just 20 sec at the bonding force. The technique has produced high-integrity bonds in alloys such as Ti-6Al-4V, retaining approximately 90% of the alloy strength in previous studies, offering advantages over established joining methods such as tungsten inert gas (TIG) and plasma arc (PA) welding due to a more highly localised heating and fusion zone. It is believed that powder interlayer bonding can compete against these techniques, providing a more time and cost-effective repair route for net shape components manufactured from a range of alloys with minimal post-processing.
Funder
Rolls-Royce
The Materials and Manufacturing Acadmey
European Social Fund
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献