An analytical cost estimation model for the design of axisymmetric components with open-die forging technology

Author:

Campi FedericoORCID,Mandolini Marco,Favi Claudio,Checcacci Emanuele,Germani Michele

Abstract

AbstractOpen-die forging is a manufacturing process commonly used for realising simple shaped components with high mechanical performances and limited capability in terms of production volume. To date, an analytical model for estimating the costs of components manufactured with this technology is still an open issue. The paper aims to define an analytical model for cost estimation of axisymmetric components manufactured by open-die forging technology. The model is grounded on the analysis of geometrical features available at the design stage providing a detailed cost breakdown in relation to all the process phases and the raw material. The model allows predicting product cost, linking geometrical features and cost items, to carry out design-to-cost actions oriented to the reduction of manufacturing cost. The model is mainly conceived for design engineers, cost engineers and buyers, respectively, for improving the product design, the manufacturing process and the supply chain. Cost model and related schemas for collecting equations and data are presented, including the approach for sizing the raw material and a set of rules for modelling the related cost. Finally, analytic equations for modelling the cost of the whole forging process (i.e. billet cutting, heating, pre-smoothing, smoothing, upsetting, max-shoulder cogging, necking and shoulders cogging) are reported. The cost model has been tested on eight cylindrical parts such as discs and shafts with different shapes, dimensions and materials. Two forge masters have been involved in the testing phase. The absolute average deviation between the actual and estimated costs is approximately 4% for raw material and 21% for the process. The absolute average deviation on the total cost (raw material and manufacturing process) is approximately 5%.

Funder

Università Politecnica delle Marche

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3