The effect of high-pressure cutting fluid supply on the chip breakability of lead-free brass alloys

Author:

Müller Magdalena SusanneORCID,Brans Kilian,Meurer Markus,Sørby Knut,Bergs Thomas

Abstract

AbstractTo improve machinability and in particular chip breakability, brass alloys are usually alloyed with small quantities of lead. Due to environmental and health concerns, the use of lead has been restricted in the last years. As lead-free brass alloys are progressively implemented in the industry, challenges arise due to their differing properties from traditional leaded brass alloys. One of the main challenges in automated continuous cutting processes is the worse chip breakability of lead-free brass alloys leading to longer and tangled chips. Hence, the impact of a high-pressure cutting fluid supply, as well as the impact of a chip-breaking geometry and the combined effect of both, has been investigated at different feeds. The three brass alloys CuZn37 (CW508L), CuZn38As (CW511L), and CuZn42 (CW510L) were studied at varying cutting fluid supply pressure levels and feed rates in a radial cutting operation. Cutting forces were measured, and chips were analyzed. No overall systematic impact of the cutting fluid supply pressure on the cutting forces was observed. In conclusion, increased pressure levels, a chip-breaking geometry, and an increased feed rate enhance the chip breakability of the investigated alloys.

Funder

Norges Forskningsråd

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3