Exploring the mechanics of adhesion in metal cutting

Author:

Svenningsson IngeORCID,Tatar KouroshORCID

Abstract

AbstractThe deterioration of the cutting edge during machining influences production cost and productivity. The adhesion is one of the main wear mechanisms. This study delves into the adhesive mechanism in the context of turning, milling, and drilling, focusing on three different cutting materials: 34CrNiMo6, 1.437 stainless steel, and ductile iron. Building upon previous research on the adhesive process in turning, a dynamic model was developed to understand the mechanism further. The results showed that adhesion is a general phenomenon occurring in all tested work materials, but with varying intensity levels. Intermittent cuts did not greatly impact the adhesive mechanism, and cutting data, coolant, and chip breaking also showed little effect. However, the presence of graphite in ductile iron temporarily inhibited adhesion. The source of the adhesive sound was found to be the pivoting movement of the chip as it binds and rips off the cutting tool, leading to a frequency shift upon detachment. The adhesive wear was found to be a thermal mechanism, where chemical reactions between the SiO2 in the work material with the cutting tool caused thermal cracks and low-frequency fatigue.

Funder

University of Gävle

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3