Criteria for Evaluating the Tribological Effectiveness of 3D Roughness on Friction Surfaces

Author:

Stelmakh Oleksandr1,Fu Hongyu1,Kolienov Serhii2,Kanevskii Vasyl3,Zhang Hao1ORCID,Hu Chenxing1,Grygoruk Valerii2

Affiliation:

1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China

2. Educational Scientific Institute of High Technologies, Quantum Radiophysics Department, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine

3. Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 03164 Kyiv, Ukraine

Abstract

A new technique for finishing the surfaces of friction pairs has been proposed, which, in combination with the original test method, has shown a significant influence of the initial roughness configuration (surface texture) on friction and wear. Two types of finishing processing of the shaft friction surfaces were compared, and it was found that the friction and wear coefficients differ by more than 2–5 and 2–4 times, respectively. Based on a new methodology for analyzing standard roughness parameters, the tribological efficiency criteria (in the sense of reducing friction and wear) are proposed for the initial state of the friction surface of a radial plane sliding bearing shaft relative to the friction direction, which is consistent with its frictional characteristics. Comparison of the laboratory test results with the surface tribological efficiency criteria showed that these criteria are very promising for controlling existing technologies and optimizing new technologies for friction surface finishing in various friction systems.

Funder

Ukrainian–Chinese bilateral project

Beijing Natural Science Foundation

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3