Tailoring microbial response to stainless steel surfaces via electrolyte jet machining and electrodeposition

Author:

Lutey Adrian H. A.,Romoli LucaORCID,Lee Janggeon,Kunieda Masanori

Abstract

AbstractElectrolyte jet machining (EJM) and electrodeposition present unexploited opportunities for the manufacturing of multiscale structured surfaces. The present work assesses the morphology and antibacterial properties of textured and multiscale stainless steel surfaces produced by EJM with a new 50 mm × 0.3 mm slit nozzle, as well as multiscale surfaces subject to electrodeposition with copper. Characterisation of the surface morphology obtained via EJM with various combinations of current density, machining time and groove spacing is performed to facilitate the selection of representative surfaces for bacterial retention tests. Higher current density with constant applied charge leads to lower surface roughness at constant scanning speed and greater groove depth and width under static conditions. Groove depth is proportional to machining time at constant current density, while a groove pitch of 1.05 mm is found to provide the optimum compromise between maximum groove depth and complete surface coverage. Microscale surface features are found to reduce Escherichia coli and Pseudomonas aeruginosa retention by up to 97% compared to untextured control surfaces, while larger grooves play a role in inhibiting bacterial attachment by inducing turbulence. The presence of copper agglomerates completely eliminates bacterial retention under the tested conditions. The developed process provides a flexible approach to tailoring surface properties for specific applications requiring antimicrobial properties.

Funder

Università di Pisa

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3