Electrochemical Jet Machining of Surface Texture: Improving the Strength of Hot-Pressure-Welded AA6061-CF/PA66 Joints

Author:

Liu Weidong1,Luo Yan1,Zhao Yonghua2,Zhou Haipeng3,Ao Sansan3ORCID,Li Yang3ORCID

Affiliation:

1. College of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300, China

2. Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China

3. School of Materials Science and Engineering, Tianjin University, Tianjin 300354, China

Abstract

Diverse industries are witnessing an increase in demand for hybrid structures of metals and carbon-fiber-reinforced thermoplastic composites (CFRTPs). Welding is an essential technique in the manufacture of metal–CFRTP hybrid structures. However, achieving high-strength metal–CFRTP welded joints faces serious challenges due to the considerable disparities in material characteristics. As an effective method to strengthen metal–CFRTP joints, surface texturing on metal is gaining significant attention. This study introduces an emerging surface texturing approach, electrochemical jet machining (EJM) using a film electrolyte jet, for enhancing the performance of AA6061-CF/PA66 hot-pressure-welded (HPW) joints. Parametric effects on surface morphology and roughness in the EJM of AA6061 are investigated. The results show that a rough surface with multiscale pores can be generated on AA6061 by EJM, and that surface morphology can be modulated by adjusting the applied current density and jet translational speed. Subsequently, the effects of different EJM-textured surface morphologies on the performance of HPW joints are examined. Surface textures created by EJM are demonstrated to significantly enhance the mechanical interlocking effect at the bonding interface between AA6061 and CF/PA66, resulting in a substantial increase in joint strength. The maximum joint strength attained in the present work with EJM texturing is raised by 45.29% compared to the joints without surface texturing. Additionally, the joint strength slightly improves as the roughness of EJM-textured surfaces rises, with the exception of rough surfaces that are textured with a combination of low current density and rapid translational speed. Overall, these findings suggest that EJM texturing using a film jet prior to welding is a potential approach for the manufacture of high-performance metal–CFRTP hybrid structures.

Funder

Scientific Research Project of Tianjin Municipal Education Commission

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3