Embedding a surface acoustic wave sensor and venting into a metal additively manufactured injection mould tool for targeted temperature monitoring

Author:

Šakalys Rokas,O’Hara Christopher,Kariminejad Mandana,Weinert Albert,Kadivar Mohammadreza,Zluhan Bruno,McAfee Marion,McGranaghan Gerard,Tormey David,Raghavendra Ramesh

Abstract

AbstractInjection moulding (IM) tools with embedded sensors can significantly improve the process efficiency and quality of the fabricated parts through real-time monitoring and control of key process parameters such as temperature, pressure and injection speed. However, traditional mould tool fabrication technologies do not enable the fabrication of complex internal geometries. Complex internal geometries are necessary for technical applications such as sensor embedding and conformal cooling which yield benefits for process control and improved cycle times. With traditional fabrication techniques, only simple bore-based sensor embedding or external sensor attachment is possible. Externally attached sensors may compromise the functionality of the injection mould tool, with limitations such as the acquired data not reflecting the processes inside the part. The design freedom of additive manufacturing (AM) enables the fabrication of complex internal geometries, making it an excellent candidate for fabricating injection mould tools with such internal geometries. Therefore, embedding sensors in a desired location for targeted monitoring of critical mould tool regions is easier to achieve with AM. This research paper focuses on embedding a wireless surface acoustic wave (SAW) temperature sensor into an injection mould tool that was additively manufactured from stainless steel 316L. The laser powder bed fusion (L-PBF) “stop-and-go” approach was applied to embed the wireless SAW sensor. After embedding, the sensor demonstrated full functionality by recording real-time temperature data, which can further enhance process control. In addition, the concept of novel print-in-place venting design, applying the same L-PBF stop-and-go approach, for vent embedding was successfully implemented, enabling the IM of defectless parts at faster injection rates, whereas cavities designed and tested without venting resulted in parts with burn marks.

Funder

Science Foundation Ireland

South East Technological University

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3