Understanding the surface integrity of laser surface engineered tungsten carbide

Author:

Hazzan Kafayat Eniola,Pacella ManuelaORCID,See Tian Long

Abstract

AbstractThe study investigated the effect of fibre laser processing (1060 nm, 240-ns pulse duration) on the surface integrity of tungsten carbide (WC). The induced surface damage ranged from crack formation, porosity, balling, to spherical pores; the severity and presence of each were dependent on the laser parameters selected. The influence of fluence (0.05–0.20 J/cm2), frequency (5–100 kHz), feed speed (250–2500 mm/s) and hatch distance (0.02–0.06 mm) on 2D and 3D surface roughness were analysed using the Taguchi technique. Fluence, frequency, and the interaction effect of these were the most influential factors on the surface integrity; from this a linear model was generated to predict the surface roughness. The model performed best at moderate to medium level of processing with an error between 1 and 10 %. The model failed to predict the material response as accurately at higher fluences with percentage errors between 15 and 36 %. In this study, a crack classification system and crack density variable were introduced to estimate the number of cracks and crack type within a 1-mm2 area size. Statistical analysis of variance (ANOVA) found that fluence (63.49%) and frequency (29.38%) had a significant effect on the crack density independently but not the interaction of both. The crack density was minimised at 0.149 J/cm2 and 52.5 kHz. To the author’s knowledge, for the first time, a quantitative analysis of the crack formation mechanism for brittle materials is proposed (post laser processing).

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3