Ultrasonic micro-injection moulding: characterisation of interfacial friction by varying feedstock shape and high-speed thermal imaging for microneedle feature replication

Author:

Gülçür MertORCID,Gough Tim,Brown Elaine,Whiteside Ben

Abstract

AbstractThis study explores the interfacial friction in ultrasonic micro-injection moulding by using different polymer feedstock shapes, characterisation of micromoulding melts through thermal imaging and assessing microneedle feature replication. Industry standard polypropylene pellets and discs with different thicknesses were used for varying the amount of interfacial friction during sonication. High-speed thermal imaging and tooling containing sapphire windows were used to visualise the melt characteristics. Moulded products were characterised using laser-scanning confocal microscopy to quantify microneedle replication. The study demonstrates that (i) the interfacial area for the different feedstock shapes affects the heating in ultrasonic micro-injection moulding significantly, (ii) disc-shaped feedstocks result in initially higher flow front velocities and exhibit dominance of viscoelastic heating over interfacial friction and (iii) industrial pellet feedstocks provide a good combination interfacial friction and viscoelastic heating and more viscosity reduction in overall leading to better microreplication efficiency. The results presented could have a significant impact on the process development of ultrasonic micro-injection moulding where process repeatability can be improved by controlling the interfacial friction. The research provides an essential contribution to the development of this process, where interfacial frictional heating can be tailored specifically for miniature functional components, offering improved precision and reduced energy use when compared with conventional methods.

Funder

H2020 European Research Council

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3