Abstract
AbstractCyber-physical production systems (CPPS) are mechatronic systems monitored and controlled by software brains and digital information. Despite its fast development along with the advancement of Industry 4.0 paradigms, an adaptive monitoring system remains challenging when considering integration with traditional manufacturing factories. In this paper, a failure predictive tool is developed and implemented. The predictive mechanism, underpinned by a hybrid model of the dynamic principal component analysis and the gradient boosting decision trees, is capable of anticipating the production stop before one occurs. The proposed methodology is implemented and experimented on a repetitive milling process hosted in a real-world CPPS hub. The online testing results have shown the accuracy of the predicted production failures using the proposed predictive tool is as high as 73% measured by the AUC score.
Funder
H2020 European Research Council
i2CAT
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献